Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hybrid index model for efficient spatio-temporal search in HBase (1805.07599v1)

Published 19 May 2018 in cs.DB

Abstract: With advances in geo-positioning technologies and geo-location services, there are a rapidly growing massive amount of spatio-temporal data collected in many applications such as location-aware devices and wireless communication, in which an object is described by its spatial location and its timestamp. Consequently, the study of spatio-temporal search which explores both geo-location information and temporal information of the data has attracted significant concern from research organizations and commercial communities. This work study the problem of spatio-temporal \emph{k}-nearest neighbors search (ST$k$NNS), which is fundamental in the spatial temporal queries. Based on HBase, a novel index structure is proposed, called \textbf{H}ybrid \textbf{S}patio-\textbf{T}emporal HBase \textbf{I}ndex (\textbf{HSTI} for short), which is carefully designed and takes both spatial and temporal information into consideration to effectively reduce the search space. Based on HSTI, an efficient algorithm is developed to deal with spatio-temporal \emph{k}-nearest neighbors search. Comprehensive experiments on real and synthetic data clearly show that HSTI is three to five times faster than the state-of-the-art technique.

Citations (4)

Summary

We haven't generated a summary for this paper yet.