Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subspace Selection via DR-Submodular Maximization on Lattices (1805.07455v1)

Published 18 May 2018 in cs.DS

Abstract: The subspace selection problem seeks a subspace that maximizes an objective function under some constraint. This problem includes several important machine learning problems such as the principal component analysis and sparse dictionary selection problem. Often, these problems can be solved by greedy algorithms. Here, we are interested in why these problems can be solved by greedy algorithms, and what classes of objective functions and constraints admit this property. To answer this question, we formulate the problems as optimization problems on lattices. Then, we introduce a new class of functions, directional DR-submodular functions, to characterize the approximability of problems. We see that the principal component analysis, sparse dictionary selection problem, and these generalizations have directional DR-submodularities. We show that, under several constraints, the directional DR-submodular function maximization problem can be solved efficiently with provable approximation factors.

Citations (6)

Summary

We haven't generated a summary for this paper yet.