Papers
Topics
Authors
Recent
2000 character limit reached

Testing Alignment of Node Attributes with Network Structure Through Label Propagation

Published 18 May 2018 in cs.SI | (1805.07375v1)

Abstract: Attributed network data is becoming increasingly common across fields, as we are often equipped with information about nodes in addition to their pairwise connectivity patterns. This extra information can manifest as a classification, or as a multidimensional vector of features. Recently developed methods that seek to extend community detection approaches to attributed networks have explored how to most effectively combine connectivity and attribute information to identify quality communities. These methods often rely on some assumption of the dependency relationships between attributes and connectivity. In this work, we seek to develop a statistical test to assess whether node attributes align with network connectivity. The objective is to quantitatively evaluate whether nodes with similar connectivity patterns also have similar attributes. To address this problem, we use a node sampling and label propagation approach. We apply our method to several synthetic examples that explore how network structure and attribute characteristics affect the empirical p-value computed by our method. Finally, we apply the test to a network generated from a single cell mass cytometry (CyTOF) dataset and show that our test can identify markers associated with distinct sub populations of single cells.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.