Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimizing for Generalization in Machine Learning with Cross-Validation Gradients

Published 18 May 2018 in stat.ML and cs.LG | (1805.07072v1)

Abstract: Cross-validation is the workhorse of modern applied statistics and machine learning, as it provides a principled framework for selecting the model that maximizes generalization performance. In this paper, we show that the cross-validation risk is differentiable with respect to the hyperparameters and training data for many common machine learning algorithms, including logistic regression, elastic-net regression, and support vector machines. Leveraging this property of differentiability, we propose a cross-validation gradient method (CVGM) for hyperparameter optimization. Our method enables efficient optimization in high-dimensional hyperparameter spaces of the cross-validation risk, the best surrogate of the true generalization ability of our learning algorithm.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.