Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing for Generalization in Machine Learning with Cross-Validation Gradients (1805.07072v1)

Published 18 May 2018 in stat.ML and cs.LG

Abstract: Cross-validation is the workhorse of modern applied statistics and machine learning, as it provides a principled framework for selecting the model that maximizes generalization performance. In this paper, we show that the cross-validation risk is differentiable with respect to the hyperparameters and training data for many common machine learning algorithms, including logistic regression, elastic-net regression, and support vector machines. Leveraging this property of differentiability, we propose a cross-validation gradient method (CVGM) for hyperparameter optimization. Our method enables efficient optimization in high-dimensional hyperparameter spaces of the cross-validation risk, the best surrogate of the true generalization ability of our learning algorithm.

Citations (7)

Summary

We haven't generated a summary for this paper yet.