Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and Deterministic Record & Replay for Actor Languages (1805.06267v2)

Published 16 May 2018 in cs.PL

Abstract: With the ubiquity of parallel commodity hardware, developers turn to high-level concurrency models such as the actor model to lower the complexity of concurrent software. However, debugging concurrent software is hard, especially for concurrency models with a limited set of supporting tools. Such tools often deal only with the underlying threads and locks, which is at the wrong abstraction level and may even introduce additional complexity. To improve on this situation, we present a low-overhead record & replay approach for actor languages. It allows one to debug concurrency issues deterministically based on a previously recorded trace. Our evaluation shows that the average run-time overhead for tracing on benchmarks from the Savina suite is 10% (min. 0%, max. 20%). For Acme-Air, a modern web application, we see a maximum increase of 1% in latency for HTTP requests and about 1.4 MB/s of trace data. These results are a first step towards deterministic replay debugging of actor systems in production.

Citations (16)

Summary

We haven't generated a summary for this paper yet.