Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CLINIQA: A Machine Intelligence Based Clinical Question Answering System (1805.05927v1)

Published 15 May 2018 in cs.CL

Abstract: The recent developments in the field of biomedicine have made large volumes of biomedical literature available to the medical practitioners. Due to the large size and lack of efficient searching strategies, medical practitioners struggle to obtain necessary information available in the biomedical literature. Moreover, the most sophisticated search engines of age are not intelligent enough to interpret the clinicians' questions. These facts reflect the urgent need of an information retrieval system that accepts the queries from medical practitioners' in natural language and returns the answers quickly and efficiently. In this paper, we present an implementation of a machine intelligence based CLINIcal Question Answering system (CLINIQA) to answer medical practitioner's questions. The system was rigorously evaluated on different text mining algorithms and the best components for the system were selected. The system makes use of Unified Medical Language System for semantic analysis of both questions and medical documents. In addition, the system employs supervised machine learning algorithms for classification of the documents, identifying the focus of the question and answer selection. Effective domain-specific heuristics are designed for answer ranking. The performance evaluation on hundred clinical questions shows the effectiveness of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. M A H Zahid (1 paper)
  2. Ankush Mittal (4 papers)
  3. R. C. Joshi (6 papers)
  4. G. Atluri (1 paper)
Citations (6)

Summary

We haven't generated a summary for this paper yet.