Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Constraint-Based Algorithm For Causal Discovery with Cycles, Latent Variables and Selection Bias (1805.02087v1)

Published 5 May 2018 in stat.ML, cs.LG, and stat.ME

Abstract: Causal processes in nature may contain cycles, and real datasets may violate causal sufficiency as well as contain selection bias. No constraint-based causal discovery algorithm can currently handle cycles, latent variables and selection bias (CLS) simultaneously. I therefore introduce an algorithm called Cyclic Causal Inference (CCI) that makes sound inferences with a conditional independence oracle under CLS, provided that we can represent the cyclic causal process as a non-recursive linear structural equation model with independent errors. Empirical results show that CCI outperforms CCD in the cyclic case as well as rivals FCI and RFCI in the acyclic case.

Citations (29)

Summary

We haven't generated a summary for this paper yet.