Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast-converging Conditional Generative Adversarial Networks for Image Synthesis (1805.01972v1)

Published 5 May 2018 in cs.CV

Abstract: Building on top of the success of generative adversarial networks (GANs), conditional GANs attempt to better direct the data generation process by conditioning with certain additional information. Inspired by the most recent AC-GAN, in this paper we propose a fast-converging conditional GAN (FC-GAN). In addition to the real/fake classifier used in vanilla GANs, our discriminator has an advanced auxiliary classifier which distinguishes each real class from an extra fake' class. Thefake' class avoids mixing generated data with real data, which can potentially confuse the classification of real data as AC-GAN does, and makes the advanced auxiliary classifier behave as another real/fake classifier. As a result, FC-GAN can accelerate the process of differentiation of all classes, thus boost the convergence speed. Experimental results on image synthesis demonstrate our model is competitive in the quality of images generated while achieving a faster convergence rate.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chengcheng Li (13 papers)
  2. Zi Wang (120 papers)
  3. Hairong Qi (41 papers)
Citations (28)