Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robustness of sentence length measures in written texts (1805.01460v1)

Published 2 May 2018 in cs.CL and physics.soc-ph

Abstract: Hidden structural patterns in written texts have been subject of considerable research in the last decades. In particular, mapping a text into a time series of sentence lengths is a natural way to investigate text structure. Typically, sentence length has been quantified by using measures based on the number of words and the number of characters, but other variations are possible. To quantify the robustness of different sentence length measures, we analyzed a database containing about five hundred books in English. For each book, we extracted six distinct measures of sentence length, including number of words and number of characters (taking into account lemmatization and stop words removal). We compared these six measures for each book by using i) Pearson's coefficient to investigate linear correlations; ii) Kolmogorov--Smirnov test to compare distributions; and iii) detrended fluctuation analysis (DFA) to quantify auto-correlations. We have found that all six measures exhibit very similar behavior, suggesting that sentence length is a robust measure related to text structure.

Citations (10)

Summary

We haven't generated a summary for this paper yet.