Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

User-Sensitive Recommendation Ensemble with Clustered Multi-Task Learning (1804.10795v1)

Published 28 Apr 2018 in cs.IR

Abstract: This paper considers recommendation algorithm ensembles in a user-sensitive manner. Recently researchers have proposed various effective recommendation algorithms, which utilized different aspects of the data and different techniques. However, the "user skewed prediction" problem may exist for almost all recommendation algorithms -- algorithms with best average predictive accuracy may cover up that the algorithms may perform poorly for some part of users, which will lead to biased services in real scenarios. In this paper, we propose a user-sensitive ensemble method named "UREC" to address this issue. We first cluster users based on the recommendation predictions, then we use multi-task learning to learn the user-sensitive ensemble function for the users. In addition, to alleviate the negative effects of new user problem to clustering users, we propose an approximate approach based on a spectral relaxation. Experiments on real-world datasets demonstrate the superiority of our methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.