BEST : A decision tree algorithm that handles missing values
Abstract: The main contribution of this paper is the development of a new decision tree algorithm. The proposed approach allows users to guide the algorithm through the data partitioning process. We believe this feature has many applications but in this paper we demonstrate how to utilize this algorithm to analyse data sets containing missing values. We tested our algorithm against simulated data sets with various missing data structures and a real data set. The results demonstrate that this new classification procedure efficiently handles missing values and produces results that are slightly more accurate and more interpretable than most common procedures without any imputations or pre-processing.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.