Papers
Topics
Authors
Recent
Search
2000 character limit reached

An approach to dealing with missing values in heterogeneous data using k-nearest neighbors

Published 13 Aug 2016 in cs.LG, cs.IR, and stat.ML | (1608.04037v1)

Abstract: Techniques such as clusterization, neural networks and decision making usually rely on algorithms that are not well suited to deal with missing values. However, real world data frequently contains such cases. The simplest solution is to either substitute them by a best guess value or completely disregard the missing values. Unfortunately, both approaches can lead to biased results. In this paper, we propose a technique for dealing with missing values in heterogeneous data using imputation based on the k-nearest neighbors algorithm. It can handle real (which we refer to as crisp henceforward), interval and fuzzy data. The effectiveness of the algorithm is tested on several datasets and the numerical results are promising.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.