Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nyldon words (1804.09735v2)

Published 25 Apr 2018 in math.CO and cs.DM

Abstract: The Chen-Fox-Lyndon theorem states that every finite word over a fixed alphabet can be uniquely factorized as a lexicographically nonincreasing sequence of Lyndon words. This theorem can be used to define the family of Lyndon words in a recursive way. If the lexicographic order is reversed in this definition, we obtain a new family of words, which are called the Nyldon words. In this paper, we show that every finite word can be uniquely factorized into a lexicographically nondecreasing sequence of Nyldon words. Otherwise stated, Nyldon words form a complete factorization of the free monoid with respect to the decreasing lexicographic order. Then we investigate this new family of words. In particular, we show that Nyldon words form a right Lazard set.

Citations (10)

Summary

We haven't generated a summary for this paper yet.