Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Co-Analysis of 3D Shape Styles from Projected Lines (1804.06579v2)

Published 18 Apr 2018 in cs.GR and cs.CV

Abstract: We present a semi-supervised co-analysis method for learning 3D shape styles from projected feature lines, achieving style patch localization with only weak supervision. Given a collection of 3D shapes spanning multiple object categories and styles, we perform style co-analysis over projected feature lines of each 3D shape and then backproject the learned style features onto the 3D shapes. Our core analysis pipeline starts with mid-level patch sampling and pre-selection of candidate style patches. Projective features are then encoded via patch convolution. Multi-view feature integration and style clustering are carried out under the framework of partially shared latent factor (PSLF) learning, a multi-view feature learning scheme. PSLF achieves effective multi-view feature fusion by distilling and exploiting consistent and complementary feature information from multiple views, while also selecting style patches from the candidates. Our style analysis approach supports both unsupervised and semi-supervised analysis. For the latter, our method accepts both user-specified shape labels and style-ranked triplets as clustering constraints.We demonstrate results from 3D shape style analysis and patch localization as well as improvements over state-of-the-art methods. We also present several applications enabled by our style analysis.

Citations (10)

Summary

We haven't generated a summary for this paper yet.