Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

3d positive lattice walks and spherical triangles (1804.06245v2)

Published 17 Apr 2018 in math.CO, cs.NA, math.NA, and math.PR

Abstract: In this paper we explore the asymptotic enumeration of three-dimensional excursions confined to the positive octant. As shown in [29], both the exponential growth and the critical exponent admit universal formulas, respectively in terms of the inventory of the step set and of the principal Dirichlet eigenvalue of a certain spherical triangle, itself being characterized by the steps of the model. We focus on the critical exponent, and our main objective is to relate combinatorial properties of the step set (structure of the so-called group of the walk, existence of a Hadamard factorization, existence of differential equations satisfied by the generating functions) to geometric or analytic properties of the associated spherical triangle (remarkable angles, tiling properties, existence of an exceptional closed-form formula for the principal eigenvalue). As in general the eigenvalues of the Dirichlet problem on a spherical triangle are not known in closed form, we also develop a finite-elements method to compute approximate values, typically with ten digits of precision.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.