Papers
Topics
Authors
Recent
Search
2000 character limit reached

Factorization theorems for classical group characters, with applications to alternating sign matrices and plane partitions

Published 12 Apr 2018 in math.CO and math.RT | (1804.04514v2)

Abstract: We show that, for a certain class of partitions and an even number of variables of which half are reciprocals of the other half, Schur polynomials can be factorized into products of odd and even orthogonal characters. We also obtain related factorizations involving sums of two Schur polynomials, and certain odd-sized sets of variables. Our results generalize the factorization identities proved by Ciucu and Krattenthaler (Advances in combinatorial mathematics, 39-59, 2009) for partitions of rectangular shape. We observe that if, in some of the results, the partitions are taken to have rectangular or double-staircase shapes and all of the variables are set to 1, then factorization identities for numbers of certain plane partitions, alternating sign matrices and related combinatorial objects are obtained.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.