Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Refined Cauchy and Littlewood identities, plane partitions and symmetry classes of alternating sign matrices (1402.0229v2)

Published 2 Feb 2014 in math.CO, math-ph, math.MP, and nlin.SI

Abstract: We prove and conjecture some new symmetric function identities, which equate the generating series of 1. Plane partitions, subject to certain restrictions and weightings, and 2. Alternating sign matrices, subject to certain symmetry properties. The left hand side of each of our identities is a simple refinement of a relevant Cauchy or Littlewood identity, allowing them to be interpreted as generating series for plane partitions. The right hand side of each identity is a partition function of the six-vertex model, on a relevant domain. These can be interpreted as generating series for alternating sign matrices, using the well known bijection with six-vertex model configurations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.