Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional Linear Discriminant Analysis: Optimality, Adaptive Algorithm, and Missing Data (1804.03018v1)

Published 9 Apr 2018 in stat.ME

Abstract: This paper aims to develop an optimality theory for linear discriminant analysis in the high-dimensional setting. A data-driven and tuning free classification rule, which is based on an adaptive constrained $\ell_1$ minimization approach, is proposed and analyzed. Minimax lower bounds are obtained and this classification rule is shown to be simultaneously rate optimal over a collection of parameter spaces. In addition, we consider classification with incomplete data under the missing completely at random (MCR) model. An adaptive classifier with theoretical guarantees is introduced and optimal rate of convergence for high-dimensional linear discriminant analysis under the MCR model is established. The technical analysis for the case of missing data is much more challenging than that for the complete data. We establish a large deviation result for the generalized sample covariance matrix, which serves as a key technical tool and can be of independent interest. An application to lung cancer and leukemia studies is also discussed.

Summary

We haven't generated a summary for this paper yet.