An addition formula for the Jacobian theta function with applications (1804.00580v3)
Abstract: Liu established an addition formula for the Jacobian theta function by using the theory of elliptic functions. From this addition formula he obtained the Ramanujan cubic theta function identity, Winquist's identity, a theta function identities with five parameters, and many other interesting theta function identities. In this paper we will give an addition formula for the Jacobian theta function which is equivalent to Liu's addition formula. Based on this formula we deduce some known theta function identities as well as new identities. From these identities we shall establish certain new series expansions for
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.