Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Kronecker theta function and a decomposition theorem for theta functions I (2012.01670v1)

Published 3 Dec 2020 in math.CV and math.NT

Abstract: The Kronecker theta function is a quotient of the Jacobi theta functions, which is also a special case of Ramanujan's $_1\psi_1$ summation. Using the Kronecker theta function as building blocks, we prove a decomposition theorem for theta functions. This decomposition theorem is the common source of a large number of theta function identities. Many striking theta function identities, both classical and new, are derived from this decomposition theorem with ease. A new addition formula for theta functions is established. Several known results in the theory of elliptic theta functions due to Ramanujan, Weierstrass, Kiepert, Winquist and Shen among others are revisited. A curious trigonometric identities is proved.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.