Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Euphrates: Algorithm-SoC Co-Design for Low-Power Mobile Continuous Vision (1803.11232v1)

Published 29 Mar 2018 in cs.CV

Abstract: Continuous computer vision (CV) tasks increasingly rely on convolutional neural networks (CNN). However, CNNs have massive compute demands that far exceed the performance and energy constraints of mobile devices. In this paper, we propose and develop an algorithm-architecture co-designed system, Euphrates, that simultaneously improves the energy-efficiency and performance of continuous vision tasks. Our key observation is that changes in pixel data between consecutive frames represents visual motion. We first propose an algorithm that leverages this motion information to relax the number of expensive CNN inferences required by continuous vision applications. We co-design a mobile System-on-a-Chip (SoC) architecture to maximize the efficiency of the new algorithm. The key to our architectural augmentation is to co-optimize different SoC IP blocks in the vision pipeline collectively. Specifically, we propose to expose the motion data that is naturally generated by the Image Signal Processor (ISP) early in the vision pipeline to the CNN engine. Measurement and synthesis results show that Euphrates achieves up to 66% SoC-level energy savings (4 times for the vision computations), with only 1% accuracy loss.

Citations (84)

Summary

We haven't generated a summary for this paper yet.