Large deviations of the Lyapunov exponent and localization for the 1D Anderson model (1803.10697v1)
Abstract: The proof of Anderson localization for the 1D Anderson model with arbitrary (e.g. Bernoulli) disorder, originally given by Carmona-Klein-Martinelli in 1987, is based in part on the multi-scale analysis. Later, in the 90s, it was realized that for one-dimensional models with positive Lyapunov exponents some parts of multi-scale analysis can be replaced by considerations involving subharmonicity and large deviation estimates for the corresponding cocycle, leading to nonperturbative proofs for 1D quasiperiodic models. In this paper we present a short proof along these lines, for the Anderson model. To prove dynamical localization we also develop a uniform version of Craig-Simon's bound that works in high generality and may be of independent interest.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.