Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cascaded multi-scale and multi-dimension convolutional neural network for stereo matching (1803.09437v2)

Published 26 Mar 2018 in cs.CV

Abstract: Convolutional neural networks(CNN) have been shown to perform better than the conventional stereo algorithms for stereo estimation. Numerous efforts focus on the pixel-wise matching cost computation, which is the important building block for many start-of-the-art algorithms. However, those architectures are limited to small and single scale receptive fields and use traditional methods for cost aggregation or even ignore cost aggregation. Differently we take them both into consideration. Firstly, we propose a new multi-scale matching cost computation sub-network, in which two different sizes of receptive fields are implemented parallelly. In this way, the network can make the best use of both variants and balance the trade-off between the increase of receptive field and the loss of detail. Furthermore, we show that our multi-dimension aggregation sub-network which containing 2D convolution and 3D convolution operations can provide rich context and semantic information for estimating an accurate initial disparity. Finally, experiments on challenging stereo benchmark KITTI demonstrate that the proposed method can achieve competitive results even without any additional post-processing.

Citations (15)

Summary

We haven't generated a summary for this paper yet.