2000 character limit reached
$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})$-Linear Skew Constacyclic Codes (1803.09316v2)
Published 25 Mar 2018 in cs.IT and math.IT
Abstract: In this paper, we study skew constacyclic codes over the ring $\mathbb{Z}{q}R$ where $R=\mathbb{Z}{q}+u\mathbb{Z}{q}$, $q=p{s}$ for a prime $p$ and $u{2}=0$. We give the definition of these codes as subsets of the ring $\mathbb{Z}{q}{\alpha}R{\beta}$. Some structural properties of the skew polynomial ring $ R[x,\theta]$ are discussed, where $ \theta$ is an automorphism of $R$. We describe the generator polynomials of skew constacyclic codes over $ R $ and $\mathbb{Z}{q}R$. Using Gray images of skew constacyclic codes over $\mathbb{Z}{q}R$ we obtained some new linear codes over $\mathbb{Z}4$. Further, we have generalized these codes to double skew constacyclic codes over $\mathbb{Z}{q}R$.