Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Frieze varieties : A characterization of the finite-tame-wild trichotomy for acyclic quivers (1803.08459v1)

Published 22 Mar 2018 in math.RT, math.AG, and math.CO

Abstract: We introduce a new class of algebraic varieties which we call frieze varieties. Each frieze variety is determined by an acyclic quiver. The frieze variety is defined in an elementary recursive way by constructing a set of points in affine space. From a more conceptual viewpoint, the coordinates of these points are specializations of cluster variables in the cluster algebra associated to the quiver. We give a new characterization of the finite--tame--wild trichotomy for acyclic quivers in terms of their frieze varieties. We show that an acyclic quiver is representation finite, tame, or wild, respectively, if and only if the dimension of its frieze variety is $0,1$, or $\ge2$, respectively.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.