Papers
Topics
Authors
Recent
2000 character limit reached

Mean Field Limit for Coulomb-Type Flows (1803.08345v5)

Published 22 Mar 2018 in math.AP, math-ph, math.CA, and math.MP

Abstract: We establish the mean-field convergence for systems of points evolving along the gradient flow of their interaction energy when the interaction is the Coulomb potential or a super-coulombic Riesz potential, for the first time in arbitrary dimension. The proof is based on a modulated energy method using a Coulomb or Riesz distance, assumes that the solutions of the limiting equation are regular enough and exploits a weak-strong stability property for them. The method can handle the addition of a regular interaction kernel, and applies also to conservative and mixed flows. In the appendix, it is also adapted to prove the mean-field convergence of the solutions to Newton's law with Coulomb or Riesz interaction in the monokinetic case to solutions of an Euler-Poisson type system.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.