Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Co-weighting Deep Convolutional Features For Object Retrieval

Published 20 Mar 2018 in cs.CV | (1803.07360v1)

Abstract: Aggregating deep convolutional features into a global image vector has attracted sustained attention in image retrieval. In this paper, we propose an efficient unsupervised aggregation method that uses an adaptive Gaussian filter and an elementvalue sensitive vector to co-weight deep features. Specifically, the Gaussian filter assigns large weights to features of region-of-interests (RoI) by adaptively determining the RoI's center, while the element-value sensitive channel vector suppresses burstiness phenomenon by assigning small weights to feature maps with large sum values of all locations. Experimental results on benchmark datasets validate the proposed two weighting schemes both effectively improve the discrimination power of image vectors. Furthermore, with the same experimental setting, our method outperforms other very recent aggregation approaches by a considerable margin.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.