Papers
Topics
Authors
Recent
2000 character limit reached

Training Recurrent Neural Networks as a Constraint Satisfaction Problem (1803.07200v7)

Published 20 Mar 2018 in cs.LG, eess.SP, and stat.ML

Abstract: This paper presents a new approach for training artificial neural networks using techniques for solving the constraint satisfaction problem (CSP). The quotient gradient system (QGS) is a trajectory-based method for solving the CSP. This study converts the training set of a neural network into a CSP and uses the QGS to find its solutions. The QGS finds the global minimum of the optimization problem by tracking trajectories of a nonlinear dynamical system and does not stop at a local minimum of the optimization problem. Lyapunov theory is used to prove the asymptotic stability of the solutions with and without the presence of measurement errors. Numerical examples illustrate the effectiveness of the proposed methodology and compare it to a genetic algorithm and error backpropagation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.