Training Recurrent Neural Networks as a Constraint Satisfaction Problem (1803.07200v7)
Abstract: This paper presents a new approach for training artificial neural networks using techniques for solving the constraint satisfaction problem (CSP). The quotient gradient system (QGS) is a trajectory-based method for solving the CSP. This study converts the training set of a neural network into a CSP and uses the QGS to find its solutions. The QGS finds the global minimum of the optimization problem by tracking trajectories of a nonlinear dynamical system and does not stop at a local minimum of the optimization problem. Lyapunov theory is used to prove the asymptotic stability of the solutions with and without the presence of measurement errors. Numerical examples illustrate the effectiveness of the proposed methodology and compare it to a genetic algorithm and error backpropagation.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.