Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Dynamic Natural Language Processing with Recurrence Quantification Analysis (1803.07136v1)

Published 19 Mar 2018 in cs.CL

Abstract: Writing and reading are dynamic processes. As an author composes a text, a sequence of words is produced. This sequence is one that, the author hopes, causes a revisitation of certain thoughts and ideas in others. These processes of composition and revisitation by readers are ordered in time. This means that text itself can be investigated under the lens of dynamical systems. A common technique for analyzing the behavior of dynamical systems, known as recurrence quantification analysis (RQA), can be used as a method for analyzing sequential structure of text. RQA treats text as a sequential measurement, much like a time series, and can thus be seen as a kind of dynamic NLP. The extension has several benefits. Because it is part of a suite of time series analysis tools, many measures can be extracted in one common framework. Secondly, the measures have a close relationship with some commonly used measures from natural language processing. Finally, using recurrence analysis offers an opportunity expand analysis of text by developing theoretical descriptions derived from complex dynamic systems. We showcase an example analysis on 8,000 texts from the Gutenberg Project, compare it to well-known NLP approaches, and describe an R package (crqanlp) that can be used in conjunction with R library crqa.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.