Axiomatic systems and topological semantics for intuitionistic temporal logic
Abstract: We propose four axiomatic systems for intuitionistic linear temporal logic and show that each of these systems is sound for a class of structures based either on Kripke frames or on dynamic topological systems. Our topological semantics features a new interpretation for the henceforth' modality that is a natural intuitionistic variant of the classical one. Using the soundness results, we show that the four logics obtained from the axiomatic systems are distinct. Finally, we show that when the language is restricted to thehenceforth'-free fragment, the set of valid formulas for the relational and topological semantics coincide.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.