Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Network Approach to Missing Marker Reconstruction in Human Motion Capture (1803.02665v4)

Published 7 Mar 2018 in cs.LG

Abstract: Optical motion capture systems have become a widely used technology in various fields, such as augmented reality, robotics, movie production, etc. Such systems use a large number of cameras to triangulate the position of optical markers.The marker positions are estimated with high accuracy. However, especially when tracking articulated bodies, a fraction of the markers in each timestep is missing from the reconstruction. In this paper, we propose to use a neural network approach to learn how human motion is temporally and spatially correlated, and reconstruct missing markers positions through this model. We experiment with two different models, one LSTM-based and one time-window-based. Both methods produce state-of-the-art results, while working online, as opposed to most of the alternative methods, which require the complete sequence to be known. The implementation is publicly available at https://github.com/Svito-zar/NN-for-Missing-Marker-Reconstruction .

Citations (15)

Summary

We haven't generated a summary for this paper yet.