Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Greedy Ranking: Slate Optimization via List-CVAE (1803.01682v6)

Published 5 Mar 2018 in stat.ML and cs.LG

Abstract: The conventional solution to the recommendation problem greedily ranks individual document candidates by prediction scores. However, this method fails to optimize the slate as a whole, and hence, often struggles to capture biases caused by the page layout and document interdepedencies. The slate recommendation problem aims to directly find the optimally ordered subset of documents (i.e. slates) that best serve users' interests. Solving this problem is hard due to the combinatorial explosion in all combinations of document candidates and their display positions on the page. Therefore we propose a paradigm shift from the traditional viewpoint of solving a ranking problem to a direct slate generation framework. In this paper, we introduce List Conditional Variational Auto-Encoders (List-CVAE), which learns the joint distribution of documents on the slate conditioned on user responses, and directly generates full slates. Experiments on simulated and real-world data show that List-CVAE outperforms popular comparable ranking methods consistently on various scales of documents corpora.

Citations (48)

Summary

We haven't generated a summary for this paper yet.