Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

N-body Networks: a Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials (1803.01588v1)

Published 5 Mar 2018 in cs.LG and cs.AI

Abstract: We describe N-body networks, a neural network architecture for learning the behavior and properties of complex many body physical systems. Our specific application is to learn atomic potential energy surfaces for use in molecular dynamics simulations. Our architecture is novel in that (a) it is based on a hierarchical decomposition of the many body system into subsytems, (b) the activations of the network correspond to the internal state of each subsystem, (c) the "neurons" in the network are constructed explicitly so as to guarantee that each of the activations is covariant to rotations, (d) the neurons operate entirely in Fourier space, and the nonlinearities are realized by tensor products followed by Clebsch-Gordan decompositions. As part of the description of our network, we give a characterization of what way the weights of the network may interact with the activations so as to ensure that the covariance property is maintained.

Citations (103)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.