Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Accelerating Natural Gradient with Higher-Order Invariance (1803.01273v2)

Published 4 Mar 2018 in cs.LG

Abstract: An appealing property of the natural gradient is that it is invariant to arbitrary differentiable reparameterizations of the model. However, this invariance property requires infinitesimal steps and is lost in practical implementations with small but finite step sizes. In this paper, we study invariance properties from a combined perspective of Riemannian geometry and numerical differential equation solving. We define the order of invariance of a numerical method to be its convergence order to an invariant solution. We propose to use higher-order integrators and geodesic corrections to obtain more invariant optimization trajectories. We prove the numerical convergence properties of geodesic corrected updates and show that they can be as computationally efficient as plain natural gradient. Experimentally, we demonstrate that invariance leads to faster optimization and our techniques improve on traditional natural gradient in deep neural network training and natural policy gradient for reinforcement learning.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.