Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-grained wound tissue analysis using deep neural network (1802.10426v1)

Published 28 Feb 2018 in cs.CV

Abstract: Tissue assessment for chronic wounds is the basis of wound grading and selection of treatment approaches. While several image processing approaches have been proposed for automatic wound tissue analysis, there has been a shortcoming in these approaches for clinical practices. In particular, seemingly, all previous approaches have assumed only 3 tissue types in the chronic wounds, while these wounds commonly exhibit 7 distinct tissue types that presence of each one changes the treatment procedure. In this paper, for the first time, we investigate the classification of 7 wound issue types. We work with wound professionals to build a new database of 7 types of wound tissue. We propose to use pre-trained deep neural networks for feature extraction and classification at the patch-level. We perform experiments to demonstrate that our approach outperforms other state-of-the-art. We will make our database publicly available to facilitate research in wound assessment.

Citations (22)

Summary

We haven't generated a summary for this paper yet.