Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-View Silhouette and Depth Decomposition for High Resolution 3D Object Representation (1802.09987v3)

Published 27 Feb 2018 in cs.CV

Abstract: We consider the problem of scaling deep generative shape models to high-resolution. Drawing motivation from the canonical view representation of objects, we introduce a novel method for the fast up-sampling of 3D objects in voxel space through networks that perform super-resolution on the six orthographic depth projections. This allows us to generate high-resolution objects with more efficient scaling than methods which work directly in 3D. We decompose the problem of 2D depth super-resolution into silhouette and depth prediction to capture both structure and fine detail. This allows our method to generate sharp edges more easily than an individual network. We evaluate our work on multiple experiments concerning high-resolution 3D objects, and show our system is capable of accurately predicting novel objects at resolutions as large as 512$\mathbf{\times}$512$\mathbf{\times}$512 -- the highest resolution reported for this task. We achieve state-of-the-art performance on 3D object reconstruction from RGB images on the ShapeNet dataset, and further demonstrate the first effective 3D super-resolution method.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.