Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Fourier transform on negatively curved harmonic manifolds (1802.07236v2)

Published 20 Feb 2018 in math.DG

Abstract: Let $X$ be a complete, simply connected harmonic manifold with sectional curvatures $K$ satisfying $K \leq -1$, and let $\partial X$ denote the boundary at infinity of $X$. Let $h > 0$ denote the mean curvature of horospheres in $X$, and let $\rho = h/2$. Fixing a basepoint $o \in X$, for $\xi \in \partial X$, let $B_{\xi}$ denote the Busemann function at $\xi$ such that $B_{\xi}(o) = 0$, then for $\lambda \in \mathbb{C}$ the function $e{(i\lambda - \rho)B_{\xi}}$ is an eigenfunction of the Laplace-Beltrami operator with eigenvalue $-(\lambda2 + \rho2)$. For a function $f$ on $X$, we define the Fourier transform of $f$ by $$\tilde{f}(\lambda, \xi) := \int_X f(x) e{(-i\lambda - \rho)B_{\xi}(x)} dvol(x)$$ for all $\lambda \in \mathbb{C}, \xi \in \partial X$ for which the integral converges. We prove a Fourier inversion formula $$f(x) = C_0 \int_{0}{\infty} \int_{\partial X} \tilde{f}(\lambda, \xi) e{(i\lambda - \rho)B_{\xi}(x)} d\lambda_o(\xi) |c(\lambda)|{-2} d\lambda$$ for $f \in C{\infty}_c(X)$, where $c$ is a certain function on $\mathbb{R} - {0}$, $\lambda_o$ is the visibility measure on $\partial X$ with respect to the basepoint $o \in X$ and $C_0 > 0$ is a constant. We also prove a Plancherel theorem. This generalizes the corresponding results for rank one symmetric spaces of noncompact type and negatively curved harmonic $NA$ groups (or Damek-Ricci spaces).

Summary

We haven't generated a summary for this paper yet.