A maximal $L_p$-regularity theory to initial value problems with time measurable nonlocal operators generated by additive processes
Abstract: Let $Z=(Z_t){t\geq0}$ be an additive process with a bounded triplet $(0,0,\Lambda_t){t\geq0}$. Suppose that for any Schwartz function $\varphi$ on $\mathbb{R}d$ whose Fourier transform is in $C_c{\infty}(B_{c_s} \setminus B_{c_s{-1}} )$, there exist positive constants $N_0$, $N_1$, and $N_2$ such that \begin{equation*} \int_{\mathbb{R}d}|\mathbb{E}[\varphi(x+r{-1}Z_t)]|dx\leq N_0 e{- \frac{N_1 t}{s(r)}},\quad \forall (r,t)\in(0,1)\times[0,T], \end{equation*} and $$ |\psi{\mu}(r{-1}D)\varphi|_{L_1(\mathbb{R}d)}\leq \frac{N_2}{s(r)},\quad \forall r\in(0,1). $$ where $s$ is a scaling function (Definition 2.4), $c_s$ is a positive constant related to $s$, $\mu$ is a symmetric L\'evy measure on $\mathbb{R}d$, $\psi{\mu}(r{-1}D)\varphi(x)= \mathcal{F}{-1} \left \psi{\mu}(r{-1}\xi) \mathcal{F}[\varphi]\right$ and $$\psi{\mu}(\xi):=\int_{\mathbb{R}d}(e{iy\cdot\xi}-1-iy\cdot\xi 1_{|y|\leq 1})\mu(dy).$$ In this paper, we establish the $L_p$-solvability to the initial value problem \begin{equation} \frac{\partial u}{\partial t}(t,x)=\mathcal{A}Z(t)u(t,x),\quad u(0,\cdot)=u_0,\quad (t,x)\in(0,T)\times\mathbb{R}d, \end{equation} In other words, there exists a unique solution $u$ to equation satisfying $$ |u|{L_q((0,T);H_p{\mu;\gamma}(\mathbb{R}d))}\leq N|u_0|{B{p,q}{s;\gamma-\frac{2}{q}}(\mathbb{R}d)}, $$ where $N$ is independent of $u$ and $u_0$, and the spaces $B_{p,q}{s;\gamma-\frac{2}{q}}(\mathbb{R}d)$ and $H_p{\mu;\gamma}(\mathbb{R}d)$ are scaled Besov spaces (see Definition 2.8) and generalized Bessel potential spaces (see Definition 2.3), respectively.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.