Papers
Topics
Authors
Recent
Search
2000 character limit reached

Cubic graphs, their Ehrhart quasi-polynomials, and a scissors congruence phenomenon

Published 20 Feb 2018 in math.CO and cs.DM | (1802.07164v1)

Abstract: The scissors congruence conjecture for the unimodular group is an analogue of Hilbert's third problem, for the equidecomposability of polytopes. Liu and Osserman studied the Ehrhart quasi-polynomials of polytopes naturally associated to graphs whose vertices have degree one or three. In this paper, we prove the scissors congruence conjecture, posed by Haase and McAllister, for this class of polytopes. The key ingredient in the proofs is the nearest neighbor interchange on graphs and a naturally arising piecewise unimodular transformation.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.