Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Methods for Data Association in Multi-Object Tracking (1802.06897v2)

Published 19 Feb 2018 in cs.CV

Abstract: Data association is a key step within the multi-object tracking pipeline that is notoriously challenging due to its combinatorial nature. A popular and general way to formulate data association is as the NP-hard multidimensional assignment problem (MDAP). Over the last few years, data-driven approaches to assignment have become increasingly prevalent as these techniques have started to mature. We focus this survey solely on learning algorithms for the assignment step of multi-object tracking, and we attempt to unify various methods by highlighting their connections to linear assignment as well as to the MDAP. First, we review probabilistic and end-to-end optimization approaches to data association, followed by methods that learn association affinities from data. We then compare the performance of the methods presented in this survey, and conclude by discussing future research directions.

Citations (39)

Summary

We haven't generated a summary for this paper yet.