Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Learning on Graphs Based on Local Label Distributions (1802.05563v2)

Published 15 Feb 2018 in cs.LG

Abstract: Most approaches that tackle the problem of node classification consider nodes to be similar, if they have shared neighbors or are close to each other in the graph. Recent methods for attributed graphs additionally take attributes of neighboring nodes into account. We argue that the class labels of the neighbors bear important information and considering them helps to improve classification quality. Two nodes which are similar based on class labels in their neighborhood do not need to be close-by in the graph and may even belong to different connected components. In this work, we propose a novel approach for the semi-supervised node classification. Precisely, we propose a new node embedding which is based on the class labels in the local neighborhood of a node. We show that this is a different setting from attribute-based embeddings and thus, we propose a new method to learn label-based node embeddings which can mirror a variety of relations between the class labels of neighboring nodes. Our experimental evaluation demonstrates that our new methods can significantly improve the prediction quality on real world data sets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.