Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing over-clustering via the powered Chinese restaurant process (1802.05392v1)

Published 15 Feb 2018 in cs.LG and stat.ML

Abstract: Dirichlet process mixture (DPM) models tend to produce many small clusters regardless of whether they are needed to accurately characterize the data - this is particularly true for large data sets. However, interpretability, parsimony, data storage and communication costs all are hampered by having overly many clusters. We propose a powered Chinese restaurant process to limit this kind of problem and penalize over clustering. The method is illustrated using some simulation examples and data with large and small sample size including MNIST and the Old Faithful Geyser data.

Citations (12)

Summary

We haven't generated a summary for this paper yet.