Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention based Sentence Extraction from Scientific Articles using Pseudo-Labeled data (1802.04675v1)

Published 13 Feb 2018 in cs.IR, cs.AI, and cs.CL

Abstract: In this work, we present a weakly supervised sentence extraction technique for identifying important sentences in scientific papers that are worthy of inclusion in the abstract. We propose a new attention based deep learning architecture that jointly learns to identify important content, as well as the cue phrases that are indicative of summary worthy sentences. We propose a new context embedding technique for determining the focus of a given paper using topic models and use it jointly with an LSTM based sequence encoder to learn attention weights across the sentence words. We use a collection of articles publicly available through ACL anthology for our experiments. Our system achieves a performance that is better, in terms of several ROUGE metrics, as compared to several state of art extractive techniques. It also generates more coherent summaries and preserves the overall structure of the document.

Citations (6)

Summary

We haven't generated a summary for this paper yet.