Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric Factorization: Recommendation beyond Matrix Factorization (1802.04606v2)

Published 13 Feb 2018 in cs.IR

Abstract: In the past decade, matrix factorization has been extensively researched and has become one of the most popular techniques for personalized recommendations. Nevertheless, the dot product adopted in matrix factorization based recommender models does not satisfy the inequality property, which may limit their expressiveness and lead to sub-optimal solutions. To overcome this problem, we propose a novel recommender technique dubbed as {\em Metric Factorization}. We assume that users and items can be placed in a low dimensional space and their explicit closeness can be measured using Euclidean distance which satisfies the inequality property. To demonstrate its effectiveness, we further designed two variants of metric factorization with one for rating estimation and the other for personalized item ranking. Extensive experiments on a number of real-world datasets show that our approach outperforms existing state-of-the-art by a large margin on both rating prediction and item ranking tasks.

Citations (34)

Summary

We haven't generated a summary for this paper yet.