Papers
Topics
Authors
Recent
Search
2000 character limit reached

Global Model Interpretation via Recursive Partitioning

Published 11 Feb 2018 in cs.LG, cs.AI, and stat.ML | (1802.04253v2)

Abstract: In this work, we propose a simple but effective method to interpret black-box machine learning models globally. That is, we use a compact binary tree, the interpretation tree, to explicitly represent the most important decision rules that are implicitly contained in the black-box machine learning models. This tree is learned from the contribution matrix which consists of the contributions of input variables to predicted scores for each single prediction. To generate the interpretation tree, a unified process recursively partitions the input variable space by maximizing the difference in the average contribution of the split variable between the divided spaces. We demonstrate the effectiveness of our method in diagnosing machine learning models on multiple tasks. Also, it is useful for new knowledge discovery as such insights are not easily identifiable when only looking at single predictions. In general, our work makes it easier and more efficient for human beings to understand machine learning models.

Citations (77)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.