Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network community detection via iterative edge removal in a flocking-like system (1802.04186v1)

Published 12 Feb 2018 in cs.SI and physics.soc-ph

Abstract: We present a network community-detection technique based on properties that emerge from a nature-inspired system of aligning particles. Initially, each vertex is assigned a random-direction unit vector. A nonlinear dynamic law is established so that neighboring vertices try to become aligned with each other. After some time, the system stops and edges that connect the least-aligned pairs of vertices are removed. Then the evolution starts over without the removed edges, and after enough number of removal rounds, each community becomes a connected component. The proposed approach is evaluated using widely-accepted benchmarks and real-world networks. Experimental results reveal that the method is robust and excels on a wide variety of networks. Moreover, for large sparse networks, the edge-removal process runs in quasilinear time, which enables application in large-scale networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.