Papers
Topics
Authors
Recent
2000 character limit reached

SSH model with long-range hoppings: topology, driving and disorder (1802.03973v3)

Published 12 Feb 2018 in cond-mat.mes-hall

Abstract: The Su-Schrieffer-Heeger (SSH) model describes a finite one-dimensional dimer lattice with first-neighbour hoppings populated by non-interacting electrons. In this work we study a generalization of the SSH model including longer-range hoppings, what we call the extended SSH model. We show that the presence of odd and even hoppings has a very different effect on the topology of the chain. On one hand, even hoppings break particle-hole and sublattice symmetry, making the system topologically trivial, but the Zak phase is still quantized due to the presence of inversion symmetry. On the other hand, odd hoppings allow for phases with a larger topological invariant. This implies that the system supports more edge states in the band's gap. We propose how to engineer those topological phases with a high-frequency driving. Finally, we include a numerical analysis on the effect of diagonal and off-diagonal disorder in the edge states properties.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.