Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Dimension-scalable recurrence threshold estimation (1802.01605v2)

Published 5 Feb 2018 in physics.data-an and nlin.CD

Abstract: The appropriate selection of recurrence thresholds is a key problem in applications of recurrence quantification analysis (RQA) and related methods across disciplines. Here, we discuss the distribution of pairwise distances between state vectors in the studied system's state space reconstructed by means of time-delay embedding as the key characteristic that should guide the corresponding choice for obtaining an adequate resolution of a recurrence plot. Specifically, we present an empirical description of the distance distribution, focusing on characteristic changes of its shape with increasing embedding dimension. Based on our results, we recommend selecting the recurrence threshold adaptively according to a fixed quantile of this distribution. We highlight the advantages of this strategy over other previously suggested approaches by discussing the performance of selected RQA measures in detecting chaos--chaos transitions in some prototypical model system.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube