Papers
Topics
Authors
Recent
Search
2000 character limit reached

Approximate Message Passing for Underdetermined Audio Source Separation

Published 1 Feb 2018 in cs.SD and eess.AS | (1802.00380v1)

Abstract: Approximate message passing (AMP) algorithms have shown great promise in sparse signal reconstruction due to their low computational requirements and fast convergence to an exact solution. Moreover, they provide a probabilistic framework that is often more intuitive than alternatives such as convex optimisation. In this paper, AMP is used for audio source separation from underdetermined instantaneous mixtures. In the time-frequency domain, it is typical to assume a priori that the sources are sparse, so we solve the corresponding sparse linear inverse problem using AMP. We present a block-based approach that uses AMP to process multiple time-frequency points simultaneously. Two algorithms known as AMP and vector AMP (VAMP) are evaluated in particular. Results show that they are promising in terms of artefact suppression.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.