Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Concise Tutorial on Approximate Message Passing (2201.07487v3)

Published 19 Jan 2022 in cs.IT and math.IT

Abstract: High-dimensional signal recovery of standard linear regression is a key challenge in many engineering fields, such as, communications, compressed sensing, and image processing. The approximate message passing (AMP) algorithm proposed by Donoho \textit{et al} is a computational efficient method to such problems, which can attain Bayes-optimal performance in independent identical distributed (IID) sub-Gaussian random matrices region. A significant feature of AMP is that the dynamical behavior of AMP can be fully predicted by a scalar equation termed station evolution (SE). Although AMP is optimal in IID sub-Gaussian random matrices, AMP may fail to converge when measurement matrix is beyond IID sub-Gaussian. To extend the region of random measurement matrix, an expectation propagation (EP)-related algorithm orthogonal AMP (OAMP) was proposed, which shares the same algorithm with EP, expectation consistent (EC), and vector AMP (VAMP). This paper aims at giving a review for those algorithms. We begin with the worst case, i.e., least absolute shrinkage and selection operator (LASSO) inference problem, and then give the detailed derivation of AMP derived from message passing. Also, in the Bayes-optimal setting, we give the Bayes-optimal AMP which has a slight difference from AMP for LASSO. In addition, we review some AMP-related algorithms: OAMP, VAMP, and Memory AMP (MAMP), which can be applied to more general random matrices.

Citations (14)

Summary

We haven't generated a summary for this paper yet.